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Abstract
It is shown that for a given bipartite density matrix and by choosing a suitable
separable set (instead of a product set) on the separable–entangled boundary, the
optimal Lewenstein–Sanpera (LS) decomposition (with respect to an arbitrary
separable set) can be obtained via a direct optimization procedure for a generic
entangled density matrix. On the basis of this, we obtain the optimal LS
decomposition for some bipartite systems such as 2 ⊗ 2 and 2 ⊗ 3 Bell
decomposable (BD) states, a generic two qubit state in Wootters basis, iso-
concurrence decomposable states, states obtained from BD states via one-
parameter and three-parameter local operations and classical communications
(LOCC), d ⊗ d Werner and isotropic states and a one-parameter 3 ⊗ 3 state.
We also obtain the optimal decomposition for multi-partite isotropic states. It
is shown that in all 2 ⊗ 2 systems considered here the average concurrence of
the decomposition is equal to the concurrence. We also show that for some
2 ⊗ 3 Bell decomposable states, the average concurrence of the decomposition
is equal to the lower bound of the concurrence of the state presented recently
in Lozinski et al (2003 Preprint quant-ph/0302144), so an exact expression
for concurrence of these states is obtained. It is also shown that for a d ⊗ d

isotropic state where decomposition leads to a separable and an entangled
pure state, the average I-concurrence of the decomposition is equal to the
I-concurrence of the state.

PACS number: 03.65.Ud

1. Introduction

In the past decade quantum entanglement has attracted much attention in connection with the
theory of quantum information and computation. This is because of the potential resource
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that entanglement provides for quantum communication and information processing [1–3].
By definition, a bipartite mixed state ρ is said to be entangled if it cannot be expressed as

ρ =
∑

i

wiρ
(1)
i ⊗ ρ

(2)
i wi � 0

∑
i

wi = 1

where ρ
(1)
i and ρ

(2)
i denote density matrices of subsystems 1 and 2, respectively. Otherwise

the state is separable.
The central tasks of quantum information theory are to characterize and quantify entangled

states. A first attempt at characterization of entangled states has been made by Peres and
Horodecki et al [4, 5]. Peres showed that a necessary condition for separability of a bipartite
system is that its partial transpose be positive. Horodecki et al have shown that this condition
is sufficient for separability of composite systems only for dimensions 2 ⊗ 2 and 2 ⊗ 3.

Having a well-justified measure to quantify entanglement, particularly for mixed states
of a bipartite system, is indeed worthwhile, and a number of measures has been proposed
[3, 6–8]. Among them the entanglement of formation has more importance, since it intends
to quantify the resources needed for creating a given entangled state.

Another interesting description of entanglement is the Lewenstein–Sanpera (LS)
decomposition [9, 10]. Lewenstein and Sanpera have shown that any bipartite density matrix
can be represented optimally as a sum of a separable state and an entangled state. They have also
shown that for two qubit systems, the decomposition reduces to a mixture of a mixed separable
state and an entangled pure state; thus all entanglement content of the state is concentrated
in the pure entangled state. This leads to an unambiguous measure of entanglement for any
two qubit state as entanglement of the pure state multiplied by the weight of the pure part in
the decomposition. The strategy of [9, 10] is based on the fact that for a given density matrix
ρ and any set V = {|eα, fα〉} of product states belonging to the range of ρ, one can subtract
a separable density matrix ρ∗

s = ∑
α �αPα (not necessary normalized) with �α � 0 such

that δρ = ρ − ρ∗
s � 0. The separable state ρ∗

s provides the optimal separable approximation
(OSA) to ρ in the sense that �(V ) = Tr(ρ∗

s (V )) is maximum. There also exists the best
separable approximation (BSA) ρ∗

s for which � = maxV �(V ). Obviously �(V ) � �(V ′)
when V ⊂ V ′.

In [9], the BSA has been obtained numerically in the case of a two qubit Werner state by
choosing a set of several hundred Pα-projectors. Some analytical results are also obtained for
special states of two qubit states [11]. Further, in [12] the BSA of a two qubit state has been
obtained algebraically. They have also shown that in some cases the weight of the entangled
part in the decomposition is equal to the concurrence of the state. In [13] we have obtained
the optimal LS decomposition for a generic two qubit density matrix by using Wootters basis.
It is shown that the average concurrence of the decomposition is equal to the concurrence of
the state.

In this paper, we obtain the optimal LS decomposition for some bipartite density matrices
ρ by choosing a suitable separable set S in which ρs ∈ S and trying to maximize Tr(ρs). The
separable state ρ∗

s which realizes the optimization is a kind of OSA in which �(S) = Tr(ρ∗
s (S))

is maximal. Accordingly, as the OSA (with respect to the product set V ) depends on the
product set V , the OSA (with respect to the separable set S) also depends on the separable
set S. There also exists the BSA ρ∗

s for which the optimization is taken over all the set of
separable states, i.e. � = maxS �(S). Obviously, �(S) � �(S ′) when S ⊂ S ′. This approach
is different from the others in the sense that the optimal decomposition is obtained for a given
separable set S instead of a product set V . Also this approach is geometrically intuitive as
will be explained in section 4 by providing a bunch of interesting bipartite systems such as
2 ⊗ 2 and 2 ⊗ 3 Bell decomposable (BD) states, a generic two qubit state in Wootters basis,
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iso-concurrence decomposable states, the states differing from BD states via one-parameter
and three-parameter local operations and classical communications (LOCC), d ⊗ d Werner and
isotropic states and a one-parameter 3 ⊗ 3 state. We also provide the optimal decomposition for
multi-partite isotropic systems. As a by-product, we show that in all 2 ⊗ 2 systems considered
here the average concurrence of the decomposition is equal to the concurrence. We also show
that for some 2 ⊗ 3 Bell decomposable states for which the entangled part of the decomposition
is only a pure state, the average concurrence of the decomposition is equal to the lower bound
of the concurrence of the state presented recently in [14]; consequently an exact expression
for the concurrence of these states is given. In the case of d ⊗ d isotropic states, we show that
the average I-concurrence of the decomposition is equal to the I-concurrence of the state.

The paper is organized as follows. In section 2 we, briefly, review concurrence as
presented in [8]. In section 3 we first review Lewenstein–Sanpera decomposition for a
bipartite density matrix, then a new prescription for finding the optimal decomposition is
presented. Some important bipartite examples are considered in section 4. The paper ends
with a brief conclusion in section 5.

2. Concurrence

In this section, we review the concurrence of two qubit mixed states as introduced in [8]. The
generalized concurrence is also reviewed, briefly.

2.1. Wootters concurrence

From the various measures proposed to quantify entanglement, the entanglement of formation
has a special position which in fact intends to quantify the resources needed for creating a given
entangled state [3]. Wootters in [8] has shown that for a two qubit system the entanglement of
formation of a mixed state ρ can be defined as

Ef (ρ) = H
(

1
2 + 1

2

√
1 − C2

)
(2.1)

where H(x) = −x ln x − (1 − x) ln(1 − x) is the binary entropy and the concurrence C(ρ) is
defined by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (2.2)

where the λi are the non-negative eigenvalues, in decreasing order, of the Hermitian matrix
R ≡ √√

ρρ̃
√

ρ where the spin-flipped state ρ̃ is defined by

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) (2.3)

where ρ∗ is the complex conjugate of ρ in a standard basis such as {|00〉, |01〉, |10〉, |11〉} and
σy represent the Pauli matrix in the local basis {|0〉, |1〉}.

Consider a generic two qubit density matrix ρ with its subnormalized orthogonal
eigenvectors |vi〉, i.e. ρ = ∑

i |vi〉〈vi |. There always exists a decomposition [8]

ρ =
∑

i

|xi〉〈xi | (2.4)

where the Wootters bases |xi〉 are defined by

|xi〉 =
4∑
j

U ∗
ij |vj 〉 for i = 1, 2, 3, 4 (2.5)

such that

〈xi | x̃j 〉 = (UτUT )ij = λiδij (2.6)



2968 S J Akhtarshenas and M A Jafarizadeh

where τij = 〈vi | ṽj 〉 is a symmetric but not necessarily Hermitian matrix. The states |x ′
i〉,

which are going to be used in our notation, are defined as

|x ′
i〉 = |xi〉√

λi

for i = 1, 2, 3, 4. (2.7)

2.2. I-concurrence

Several attempts to generalize the notion of concurrence for arbitrary bipartite quantum systems
have been made already [15–17]. Among them the so-called I-concurrence [17] is defined
in terms of a universal-inverter superoperator which is a natural generalization to higher
dimensions of the two qubit spin flip. I-concurrence of a joint pure state |ψ〉 of a dA ⊗ dB

system is defined by Rungta et al [17] as

C(|ψ〉) =
√

2
(
1 − tr

(
ρ2

A

)) =
√

2
(
1 − tr

(
ρ2

B

))
(2.8)

where ρA = trB(|ψ〉〈ψ |) and ρB is defined similarly.

3. Lewenstein–Sanpera decomposition

According to the Lewenstein–Sanpera decomposition [9], any bipartite density matrix ρ can
be written as

ρ = λρs + (1 − λ)ρe λ ∈ [0, 1] (3.9)

where ρs is a separable density matrix and ρe is an entangled state. The LS decomposition
of a given density matrix ρ is not unique and, in general, there is a continuum set of LS
decompositions to choose from. However, Lewenstein and Sanpera in [9, 10] have shown
that the optimal decomposition is unique for which λ is maximal. Furthermore, they have
demonstrated that in the case of a two qubit system ρe reduces to a single pure state.

The idea of [9, 10] is based on the method of subtracting projections on product vectors
from a given state, that is, for a given density matrix ρ and any set V = {|eα, fα〉} of product
states belonging to the range of ρ, one can subtract a separable density matrix ρ∗

s = ∑
α �αPα

(not necessary normalized) with all �α � 0 such that δρ = ρ − ρ∗
s � 0. The separable state

ρ∗
s provides the OSA in the sense that trace �(V ) = Tr(ρ∗

s ) � 1 is maximal and the entangled
part ρe is called an edge state, a state with no product vectors in the range [18]. Lewenstein
and Sanpera provide the conditions that trace Tr(ρ∗

s ) is maximal. They have also demonstrated
that there exists the best separable approximation ρ∗

s for which � = maxV �(V ), obviously,
�(V ) � �(V ′) when V ⊂ V ′.

In this paper we will deal with LS decomposition from a different point of view. Our
approach is based on the fact that the set of separable density matrices is convex and compact
[19, 20]. This follows from the fact that any separable density matrix ρs ∈ S can be written
as a finite convex combination of pure product states. The density operators on H1 ⊗H2 form
a compact and convex subset D of the Hilbert space of Hilbert–Schmidt class operators [20].
Let P denote the set of all pure product states. P is a tensor product of two spheres which are
compact in the finite dimensional case. So P is also compact [19]. The set of all finite convex
combinations of product states P is defined as the convex hull of P , i.e. S = convP , and
the convex hull of a compact set P is also compact, so the set of separable density matrices is
compact [19].

Based on the above fact we obtain the optimal LS decomposition for some bipartite
systems. For a given density matrix ρ, we choose a suitable separable set S ⊂ S on the
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separable–entangled boundary, and express ρ as a convex combination of a separable state
ρs ∈ S and an arbitrary entangled state ρe, i.e. ρ = λρs + (1 − λ)ρe. Then we evaluate λ

and provide the conditions that λ is maximal under the restrictions that ρs is in the separable
set S and maintaining the positivity of the difference ρ − λρs , i.e. ρe remains non-negative.
With this aim we allow ρs to move on the surface defined by S, and simultaneously search
for the ρe with corresponding maximal λ. This restricts ρe to some entangled states and gives
ρs as a function of ρ and restricted ρe. The only matter that should be noted in choosing
the set S for which ρs ∈ S is that all states on the line segment connecting ρs and ρ, i.e.
ρε = ερs + (1 − ε)ρ for 0 � ε � 1, must be entangled. This guarantees that the obtained
decomposition is indeed maximal. Obviously, the decomposition depends on the separable
set S, therefore the maximality of λ depends on the size of the separable set S, i.e. the better
the choice of the set S (the larger in size), the greater the λ achieved. In the case that S involves
all separable states then λ = maxS λ(S) and the corresponding ρ∗

s is the BSA. In all examples
considered in this paper we will see that the rank of ρe is less than the rank of ρ. This means
that ρe is an edge state with no product vectors in its range as pointed out in [18]. Moreover,
in the case of a two qubit system it is shown that ρe reduces to a pure entangled state as we
expect from the results of [9, 10]. For these systems ρs is defined as a function of ρ and the
concurrence of an entangled pure state. To make our consideration clearer, we provide some
examples in the next section.

4. Some important examples

In this section we obtain the optimal decomposition for some categories of states, namely,
2 ⊗ 2 Bell decomposable states, a generic two qubit state in Wootters basis, iso-concurrence
decomposable states, some 2⊗2 states obtaining from BD states via one-parameter and three-
parameter LOCC operations, 2 ⊗ 3 Bell decomposable states, d ⊗ d Werner and isotropic
states, a one-parameter 3 ⊗ 3 state and finally multi-partite isotropic states.

4.1. 2 ⊗ 2 Bell decomposable states

We begin by considering a 2⊗2 Bell decomposable state. A BD state acting on H 4 ∼= H 2 ⊗H 2

Hilbert space is defined by

ρ =
4∑

i=1

pi |ψi〉〈ψi | 0 � pi � 1
4∑

i=1

pi = 1 (4.10)

where |ψi〉 are Bell states given by

|ψ1〉 = |φ+〉 = 1√
2
(|00〉 + |11〉) |ψ2〉 = |φ−〉 = 1√

2
(|00〉 − |11〉) (4.11)

|ψ3〉 = |ψ+〉 = 1√
2
(|01〉 + |10〉) |ψ4〉 = |ψ−〉 = 1√

2
(|01〉 − |10〉). (4.12)

A BD state is separable iff pi � 1
2 for all i = 1, 2, 3, 4 [21]. In the following we consider the

case that ρ is entangled for which p1 > 1
2 . To obtain the optimal LS decomposition we choose

ρs = ∑4
i=1 p′

i |ψi〉〈ψi | with p′
1 = 1

2 as a boundary separable state and ρe = ∑4
i=1 p′′

i |ψi〉〈ψi |.
Inserting these equations into the decomposition given in equation (3.9) we get

pi = λp′
i + (1 − λ)p′′

i for i = 1, 2, 3, 4. (4.13)

From equation (4.13) we get λ = C ′′−C
C ′′ and dλ

dC ′′ = C

C ′′2 � 0 where C = 2p1 − 1 and
C ′′ = 2p′′

1 − 1 are the concurrence of ρ and ρe, respectively. This means that in order to
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obtain the optimal decomposition, i.e. having maximal λ, we require that C ′′ takes its maximal
value, where this happens as long as p′′

2 = p′′
3 = p′′

4 = 0, i.e. ρe is a pure entangled state.
Considering the above arguments we get the following results for λ, ρs and ρe:

λ = 1 − C ρe = |ψ1〉〈ψ1|
p′

1 = 1

2
p′

j = pj

λ
for j = 2, 3, 4.

(4.14)

Equation (4.14) simply shows that the average concurrence of the decomposition is equal to
the concurrence of state, i.e. (1 − λ)C(|ψ〉) = C.

4.2. A generic two qubit state in Wootters’s basis

In this subsection we obtain the optimal LS decomposition for a generic two qubit density
matrix by using Wootters basis. As we mentioned already in section 2.1 a generic two
qubit density matrix can be written in terms of its Wootters basis as ρ = ∑

i λi |x ′
i〉〈x ′

i |.
Now in order to obtain the optimal LS decomposition we choose ρs = ∑

i λ
′
i |x ′

i〉〈x ′
i | with

λ′
1 − λ′

2 − λ′
3 − λ′

4 = 0 as a boundary separable state and ρe = ∑
i λ

′′
i |x ′

i〉〈x ′
i |. Inserting these

equations into the decomposition given in equation (3.9) we get

λi = λλ′
i + (1 − λ)λ′′

i for i = 1, 2, 3, 4. (4.15)

From equation (4.15) we get λ = C ′′−C
C ′′ and dλ

dC ′′ = C

C ′′2 � 0 where C = λ1 − λ2 − λ3 − λ4

and C ′′ = λ′′
1 − λ′′

2 − λ′′
3 − λ′′

4 are the concurrence of ρ and ρe, respectively. This means that
in order to obtain the optimal decomposition, i.e. having maximal λ, we require that C ′′ takes
its maximal value, which happens as long as λ′′

2 = λ′′
3 = λ′′

4 = 0, i.e. ρe is a pure entangled
state with concurrence λ′′

1. Considering the above arguments we get the following results for
λ, ρs and ρe:

λ = 1 − C

λ′′
1

ρe = λ′′
1|x ′

1〉〈x ′
1|

λ′
1 = λ2 + λ3 + λ4

λ
λ′

j = λj

λ
for j = 2, 3, 4.

(4.16)

Equation (4.16) simply shows that the average concurrence of the decomposition is equal to
the concurrence of state, i.e. (1 − λ)C(|ψ〉) = C. The decomposition (4.16) is in agreement
with the results obtained in [13].

4.3. Iso-concurrence decomposable states

In this section we define the so-called iso-concurrence decomposable (ICD) states, then we
give their separability condition and evaluate the optimal decomposition. The iso-concurrence
states are defined by

|φ1〉 = cos θ |00〉 + sin θ |11〉) |φ2〉 = sin θ |00〉 − cos θ |11〉) (4.17)

|φ3〉 = cos θ |01〉 + sin θ |10〉) |φ4〉 = sin θ |01〉 − cos θ |10〉). (4.18)

It is quite easy to see that the above states are orthogonal and thus span the Hilbert space of
2 ⊗ 2 systems. Also by choosing θ = π

4 the above states reduce to Bell states. Now we can
define a ICD state as

ρ =
4∑

i=1

pi |φi〉〈φi | 0 � pi � 1
4∑

i=1

pi = 1. (4.19)
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These states form a four simplex (tetrahedral) with its vertices defined by p1 = 1, p2 = 1,

p3 = 1 and p4 = 1, respectively.
Peres–Horodecki’s criterion [4, 5] for separability implies that the state given in

equation (4.19) is separable if and only if the following inequalities are satisfied:

(p1 − p2) sin 2θ �
√

4p3p4 + (p3 − p4)2 sin2 2θ (4.20)

(p2 − p1) sin 2θ �
√

4p3p4 + (p3 − p4)2 sin2 2θ (4.21)

(p3 − p4) sin 2θ �
√

4p1p2 + (p1 − p2)2 sin2 2θ (4.22)

(p4 − p3) sin 2θ �
√

4p1p2 + (p1 − p2)2 sin2 2θ. (4.23)

Inequalities (4.20)–(4.23) divide the tetrahedral density matrices into five regions. The central
region, defined by the above inequalities, forms a deformed octahedron and are separable
states. In the other four regions one of the above inequalities will not hold, therefore they
represent entangled states. Below we consider the entangled states corresponding to the
violation of inequality (4.20), i.e. the states which satisfy the following inequality:

(p1 − p2) sin 2θ >
√

4p3p4 + (p3 − p4)2 sin2 2θ. (4.24)

All other ICD states can be obtained via local unitary transformations. Now we will obtain
the concurrence of ICD states. Following the Wootters protocol given in subsection 2.1 we
get for the state ρ given in equation (4.19)

τ =




−p1 sin 2θ
√

p1p2 cos 2θ 0 0
√

p1p2 cos 2θ p2 sin 2θ 0 0

0 0 p3 sin 2θ −√
p3p4 cos 2θ

0 0 −√
p3p4 cos 2θ −p4 sin 2θ


 . (4.25)

Now it is easy to evaluate λi which yields

λ1,2 = 1
2

(±(p1 − p2) sin 2θ +
√

4p1p2 + (p1 − p2)2 sin2 2θ
)

λ3,4 = 1
2

(±(p3 − p4) sin 2θ +
√

4p3p4 + (p3 − p4)2 sin2 2θ
)
.

(4.26)

Thus, one can evaluate the concurrence of ICD states as

C = (p1 − p2) sin 2θ −
√

4p3p4 + (p3 − p4)2 sin2 2θ. (4.27)

It is worth noting that this obtained concurrence is equal to the amount of violation of inequality
(4.24). Note that the concurrence of an ICD state can be written as

A11 − A22 −
√

(A33 + A44)2 − 4A2
34 (4.28)

where Aij denote matrix representation of the ICD states in Bell basis, that is

A11 = 1
2 (p1 + p2 + (p1 − p2) sin 2θ) A22 = 1

2 (p1 + p2 − (p1 − p2) sin 2θ) (4.29)

A33 = 1
2 (p3 + p4 + (p3 − p4) sin 2θ) A44 = 1

2 (p3 + p4 − (p3 − p4) sin 2θ) (4.30)

A12 = 1
2 (p1 − p2) cos 2θ A34 = 1

2 (p3 − p4) cos 2θ. (4.31)

Now in order to obtain the optimal LS decomposition we parametrize ρs like the ICD state with
matrix elements A′

ij (in the Bell basis) which are defined like Aij except for pi and θ which are
replaced with p′

i and θ ′, respectively. We also choose ρe similar to ρ with matrix elements A′′
ij
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parametrized with p′′
i and θ ′′. For simplicity the rank of ρe is considered to be 2, namely p′′

3 =
p′′

4 = 0. Using these considerations together with equation (3.9) we get

Aij = λA′
ij + (1 − λ)A′′

ij . (4.32)

Taking into account the fact that ρs is a boundary separable state with zero concurrence and
using equation (4.28), we get λ = C ′′−C

C ′′ and dλ
dC ′′ = C

C ′′2 � 0, where C and C ′′ are the
concurrence of ρ and ρe, respectively. Obviously we observe that λ becomes maximal when
ρe is a pure entangled state. Considering this fact and setting p′′

2 = 0 we arrive at

p1 + p2 + (p1 − p2) sin 2θ = λ(p′
1 + p′

2 + (p′
1 − p′

2) sin 2θ ′) + (1 − λ)(1 + sin 2θ ′′) (4.33)

p1 + p2 − (p1 − p2) sin 2θ = λ(p′
1 + p′

2 − (p′
1 − p′

2) sin 2θ ′) + (1 − λ)(1 − sin 2θ ′′) (4.34)

p3 + p4 + (p3 − p4) sin 2θ = λ(p′
3 + p′

4 + (p′
3 − p′

4) sin 2θ ′) (4.35)

p3 + p4 − (p3 − p4) sin 2θ = λ(p′
3 + p′

4 − (p′
3 − p′

4) sin 2θ ′) (4.36)

(p1 − p2) cos 2θ = λ(p′
1 − p′

2) cos 2θ ′ + (1 − λ) cos 2θ ′′ (4.37)

(p3 − p4) cos 2θ = λ(p′
3 − p′

4) cos 2θ ′. (4.38)

In order to solve the above equations we consider two cases separately.

(i) Case 1. First let us consider the case that θ, θ ′ �= π
4 . In this case equations (4.33)–(4.38)

yield

θ = θ ′ = θ ′′

λ = 1 − (p1 − p2) +

√
4p3p4

sin 2θ2 + (p3 − p4)2

p′
1 = p1 − (1 − λ)

λ
p′

j = pj

λ
for j = 2, 3, 4.

(4.39)

This case corresponds to the results of [22].
(ii) Case 2. Now let us consider the case that θ = π

4 , i.e. ρ is a Bell decomposable state. The
only non-trivial solution of equation (4.38) is p′

3 = p′
4. Equations (4.35) and (4.36) show

that this restricts the density matrix to p3 = p4. Combining all, we arrive at the following
ρs for decomposition:

tan 2θ ′ = p1 + p2 − 1

C
tan 2θ ′′ λ = 1 − C

sin 2θ ′′ (4.40)

p′
1,2 = 1

2λ

(
p1 + p2 − C

sin 2θ ′′ ± 1 − p1 − p2

sin 2θ ′

)
(4.41)

p′
3 = p′

4 = p3

λ
. (4.42)

where C = 2p1 − 1 is the concurrence of ρ. The separability of density matrix ρs implies
that p′

i � 0 for all i (recall that the separability condition has already been imposed over ρs

by putting its concurrence equal to zero). So p′
i should satisfy the following condition:

sin 2θ ′′ � (p1 + p2)C

p1C + p2
(4.43)

where the above inequality turns to equality whenever the rank of ρs is 3. This condition also
guarantees positivity of λ. It is worth emphasizing that this case involves the result of [23] as
a special case. There authors have obtained the optimal decomposition for a special kind of
BD state, namely a specific Werner state with p1 = 5

8 (of course, in their treatment they take
singlet state |ψ4〉 as the dominant pure state in the Werner state, i.e. p4 = 5

8 ).
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4.4. One-parameter LOCC operations

In this subsection we will obtain the optimal decomposition for some two qubit states which
can be obtained from BD states by using LOOC operations. In [13] we have shown that a
generic two qubit density matrix ρ = ∑

i λi |x ′
i〉〈x ′

i | with corresponding set of positive numbers
λi and Wootters basis |x ′

i〉 can be obtained from a Bell decomposable state with the same set
of positive numbers λi but with different Wootters basis via SO(4, c) transformation. It is
also shown that local unitary transformations correspond to SO(4, r) transformations, hence,
ρ can be represented as the coset space SO(4, c)/SO(4, r) together with the positive numbers
λi . Therefore, a generic two qubit density matrix ρ can be represented in the Bell basis as
ρ = Y�Y † where Y ∈ SO(4, c)/SO(4, r) and � = diag(λ1, λ2, λ3, λ4) [13]. It is also
demonstrated in [13] that the above representation of a two qubit density matrix is equivalent
to the LOCC operations on Bell decomposable states. In the following we consider the case
that Y is a one-parameter matrix:

Y =




cosh θ i sinh θ 0 0

−i sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1


 (4.44)

thus

ρ = Y�Y † =




λ1 cosh2 θ + λ2 sinh2 θ i(λ1 + λ2) sinh θ cosh θ 0 0

−i(λ1 + λ2) sinh θ cosh θ λ1 sinh2 θ + λ2 cosh2 θ 0 0

0 0 λ3 0

0 0 0 λ4


 . (4.45)

Obviously, the normalization condition leads to (λ1 + λ2) cosh 2θ + λ3 + λ4 = 1. We choose
ρs in the same form as ρ, i.e. ρs = Y ′�′Y ′† where �′ = diag(λ′

1, λ
′
2, λ

′
3, λ

′
4) and Y ′ is defined

as Y but here θ is replaced with θ ′. Now in order to obtain the optimal LS decomposition
we have to get a generic density matrix for ρe. After doing so, it can be easily seen that
equation (3.9) requires that ρe also has the same form as ρ and ρs , i.e. ρe = Y ′′�′′Y ′′† where
�′′ = diag(λ′′

1, λ
′′
2, λ

′′
3, λ

′′
4) and Y ′′ is defined as Y but with θ ′′ instead of θ . Inserting the above

equations in equation (3.9) we get

Y�Y † = λ(Y ′�′Y ′†) + (1 − λ)(Y ′′�′′Y ′′†). (4.46)

Now multiplying equation (4.46) by Y ′′T and Y ′′∗, respectively from the left and right and
using the orthogonality of Y ′′ we get

(Y ′′T Y )�(Y †Y ′′∗) = λ(Y ′′T Y ′)�′(Y ′†Y ′′∗) + (1 − λ)�′′ (4.47)

where it can be written as

(λ1 cosh2(θ − θ ′′) + λ2 sinh2(θ − θ ′′))
= λ(λ′

1 cosh2(θ ′ − θ ′′) + λ′
2 sinh2(θ ′ − θ ′′)) + (1 − λ)λ′′

1 (4.48)

(λ1 sinh2(θ − θ ′′) + λ2 cosh2(θ − θ ′′))
= λ(λ′

1 sinh2(θ ′ − θ ′′) + λ′
2 cosh2(θ ′ − θ ′′)) + (1 − λ)λ′′

2 (4.49)

λ3 = λλ′′
3 + (1 − λ)λ′′

3 (4.50)

λ4 = λλ′′
4 + (1 − λ)λ′′

4 (4.51)

(λ1 + λ2) sinh 2(θ − θ ′′) + λ(λ′
1 + λ′

2) sinh 2(θ ′ − θ ′′) = 0. (4.52)
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Subtracting equations (4.49), (4.50) and (4.51) from equation (4.48) and using the fact that ρs

is a boundary separable state, hence having zero concurrence, i.e. λ′
1 − λ′

2 − λ′
3 − λ′

4 = 0, we
get λ = C ′′−C

C ′′ , dλ
dC ′′ = C

C ′′2 � 0 where C = λ1 − λ2 − λ3 − λ4 and C ′′ = λ′′
1 − λ′′

2 − λ′′
3 − λ′′

4
are the concurrence of ρ and ρe, respectively. This shows that maximal λ is achieved when
λ′′

2 = λ′′
3 = λ′′

4 = 0, i.e. ρe is a pure entangled state with concurrence λ′′
1. Implying the above

results we can solve equations (4.48)–(4.52) for λ and ρs where we get

λ = 1 − C cosh 2θ ′′ (4.53)

tanh 2(θ ′ − θ ′′) = (λ1 + λ2) sinh 2(θ − θ ′′)
(λ1 + λ2) cosh 2(θ − θ ′′) − C

(4.54)

λ′
1,2 = 1

2λ

(
(λ1 + λ2) cosh 2(θ − θ ′′) − C

cosh 2(θ ′ − θ ′′)
± (λ3 + λ4)

)
(4.55)

λ′
j = λj

λ
for j = 3, 4 (4.56)

where in equation (4.53) we have used λ′′
1 = 1

cosh 2θ ′′ which follows from the normalization
condition of ρe. Finally from the positivity conditions for λ and λi we see that the following
inequalities should hold:

cosh 2θ ′′ � 1

C
cosh 2(θ − θ ′′) � λ1 − λ2

λ1 + λ2
+

2λ1λ2

(λ1 + λ2)C
. (4.57)

In the case that the second inequality is saturated, the rank of ρs reduces to 3. It is worth noting
that the generalized Werner state of the second kind which is defined as a mixture of an arbitrary
pure state |χ〉 and the totally mixed state ρ0 = I/4, i.e. ρ = x|χ〉〈χ | + (1 − x)ρ0, can be
obtained from the above example by setting λ2 cosh 2θ = λ3 = λ4 and x = (4λ1 cosh 2θ−1)/3
also, where Englert et al obtained the optimal decomposition of this state in [11]. Since the
separable set S is a subset of the one considered in [11], the optimal decomposition obtained
here is different from the one obtained in [11]. Note that the above decomposition is not a
special case of the decomposition considered in subsection 4.2. There we considered the case
that all ρ, ρs and ρe were expressed in the same Wootters basis. Here their Wootters bases are
parametrized differently, namely θ , θ ′ and θ ′′, respectively. The optimal decomposition given
by equations (4.53)–(4.56) involves some interesting special cases as follows:

case (i) θ = θ ′. In this case from equations (4.53)–(4.56) we get θ ′′ = θ , which yields the
results of subsection 4.2 for a one-parameter Wootters basis.

case (ii) θ = 0, θ ′′ �= 0. This case leads to the optimal decomposition of a BD state in terms
of the non-maximal entangled pure state. This case can also be considered as a generalization
of the result of [23].

case (iii) θ �= 0, θ ′′ = 0. This case leads to the optimal decomposition of a one-parameter
LOCC transformed BD state in terms of a maximal entangled pure state.

4.5. Three-parameter LOCC transformed BD states

Following the previous subsection we consider here the case that ρ can be obtained from BD
states via three-parameter LOCC transformation as ρ = Y�Y † with [13]
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Y =




cosh θ cosh ξ cosh φ + sinh θ sinh φ i(cosh θ cosh ξ sinh φ + sinh θ cosh φ) i cosh θ sinh ξ 0

−i(sinh θ cosh ξ cosh φ + cosh θ sinh φ) sinh θ cosh ξ sinh φ + cosh θ cosh φ sinh θ sinh ξ 0

−i sinh ξ cosh φ sinh ξ sinh φ cosh ξ 0

0 0 0 1




(4.58)

where normalization condition leads to

Tr(ρ) = ((λ1 cosh2 φ + λ2 sinh2 φ) cosh2 ξ + λ3 sinh2 ξ + (λ1 sinh2 φ + λ2 cosh2 φ)) cosh 2θ

+ (λ1 cosh2 φ + λ2 sinh φ) sinh2 ξ + λ3 cosh2 ξ

+ (λ1 + λ2) cosh ξ sinh 2θ sinh 2φ + λ4 = 1. (4.59)

We choose ρs below in the same form as ρ, i.e. ρs = Y ′�′Y ′† where �′ = diag(λ′
1, λ

′
2, λ

′
3, λ

′
4)

and Y ′ are defined as Y but here θ , ξ and φ are replaced with θ ′, ξ ′ and φ′. Now to obtain
the optimal LS decomposition we should take a generic density matrix for ρe. It can be easily
seen that equation (3.9) requires that ρe also has the same form as ρ and ρs . So we get
ρe = Y ′′�′′Y ′′† where �′′ = diag(λ′′

1, λ
′′
2, λ

′′
3, λ

′′
4) and Y ′′ is defined as Y but here θ , ξ and φ

are replaced with θ ′′, ξ ′′ and φ′′. By using the above considerations and equation (3.9) we get

Y�Y † = λ(Y ′�′Y ′†) + (1 − λ)(Y ′′�′′Y ′′†). (4.60)

Now multiplying equation (4.60) by Y ′′T and Y ′′∗, respectively from the left and right and
using the orthogonality of Y ′′ we get

(Y ′′T Y )�(Y †Y ′′∗) = λ(Y ′′T Y ′)�′(Y ′†Y ′′∗) + (1 − λ)λ′′. (4.61)

Subtracting the last three diagonal elements of matrix equation (4.61) from the first one and
using the fact that ρs has zero concurrence, i.e. λ′

1 − λ′
2 − λ′

3 − λ′
4 = 0, we get after some

algebraic calculations λ = C ′′−C
C ′′ and dλ

dC ′′ = C

C ′′2 � 0 where C = λ1 − λ2 − λ3 − λ4 and
C ′′ = λ′′

1 −λ′′
2 −λ′′

3 −λ′′
4 are the concurrence of ρ and ρe, respectively. This shows that maximal

λ is achieved when λ′′
2 = λ′′

3 = λ′′
4 = 0, i.e. ρe is a pure entangled state with concurrence λ′′

1.
Considering the above results we can write equation (4.60) as

ρ11 = λρ ′
11 + (1 − λ)λ′′

1(cosh θ cosh ξ cosh φ + sinh θ sinh φ)2 (4.62)

ρ22 = λρ ′
22 + (1 − λ)λ′′

1(sinh θ cosh ξ cosh φ + cosh θ sinh φ)2 (4.63)

ρ33 = λρ ′
33 + (1 − λ)λ′′

1 sinh2 ξ cosh2 φ (4.64)

ρ44 = λρ ′
44 (4.65)

ρ12 = λρ ′
12 + (1 − λ)λ′′

1((cosh2 ξ cosh2 φ + sinh2 φ) sinh 2θ + cosh ξ cosh 2θ sinh 2φ) (4.66)

ρ13 = λρ ′
13 + (1 − λ)λ′′

1(cosh θ cosh2 φ sinh 2ξ + sinh θ sinh ξ sinh 2φ) (4.67)

ρ23 = λρ ′
23 + (1 − λ)λ′′

1(sinh θ cosh2 φ sinh 2ξ + cosh θ sinh ξ sinh 2φ) (4.68)

where

ρ11 = (λ1(cosh θ cosh ξ cosh φ + sinh θ sinh φ)2

+ λ2(cosh θ cosh ξ sinh φ + sinh θ cosh φ)2 + λ3(cosh θ sinh ξ)2) (4.69)

ρ22 = (λ1(sinh θ cosh ξ cosh φ + cosh θ sinh φ)2

+ λ2(sinh θ cosh ξ sinh φ + cosh θ cosh φ)2 + λ3(sinh θ sinh ξ)2) (4.70)

ρ33 = (λ1 sinh2 ξ cosh2 φ + λ2 sinh2 ξ sinh2 φ + λ3 cosh2 ξ) (4.71)
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ρ44 = λ4 (4.72)
ρ12 = ((λ1(cosh2 ξ cosh2 φ + sinh2 φ) + λ2(cosh2 ξ sinh2 φ + cosh2 φ) + λ3 sinh2 ξ) sinh 2θ

+ (λ1 + λ2) cosh ξ sinh 2φ cosh 2θ) (4.73)

ρ13 = ((λ1 cosh2 φ + λ2 sinh2 φ + λ3) cosh θ sinh 2ξ + (λ1 + λ2) sinh θ sinh ξ sinh 2φ) (4.74)

ρ23 = ((λ1 cosh2 φ + λ2 sinh2 φ + λ3) sinh θ sinh 2ξ + (λ1 + λ2) cosh θ sinh ξ sinh 2φ′)
(4.75)

and ρ ′
ij are defined in the same form as ρij but here all parameters are expressed in terms of

the prime parameters. After tedious but straightforward calculations we arrive at the following
results for ρs :

tanh ξ ′ = −F sinh θ ′ + G cosh θ ′

(p1 + p2 − A) sinh 2θ ′ + E cosh 2θ ′ (4.76)

tanh 2ξ ′ = −F cosh θ ′ + G sinh θ ′

p1 cosh2 θ ′ + p2 sinh2 θ ′ + p3 − 1
2 (A cosh 2θ ′ − E sinh 2θ ′ + B + 2D)

(4.77)

tanh 2φ′ = F sinh θ ′ − G cosh θ ′

sinh ξ ′(�λ′
3 + (p1 + p2 − A) cosh 2θ ′ − p3 + E sinh 2θ ′ + D)

(4.78)

λ′
3 = 1

2λ

(−F cosh θ ′ + G sinh θ ′

sinh 2ξ ′ − p1 cosh2 θ ′ − p2 sinh2 θ ′ + P3

+
1

2
(A cosh 2θ ′ − E sinh 2θ ′ + B − 2D)

)
(4.79)

λ′
1 = 1

2λ

(
1

cosh 2φ′ (�λ′
3 + (p1 + p2 − A) cosh 2θ ′ − P3 + E sinh 2θ ′ + D)

+ �λ′
3 + p1 − p2 − p3 − B + D

)
(4.80)

λ′
2 = 1

2λ

(
1

cosh 2φ′ (�λ′
3 + (p1 + p2 − A) cosh 2θ ′ − P3 + E sinh 2θ ′ + D)

−�λ′
3 − p1 + p2 + p3 + B − D

)
(4.81)

λ′
4 = p4

λ
(4.82)

where

A = (1 − λ)λ′′
1((cosh2 ξ cosh2 φ + sinh2 φ) cosh 2θ + cosh ξ sinh 2θ sinh 2φ) (4.83)

B = (1 − λ)λ′′
1(cosh2 ξ cosh2 φ − sinh2 φ) (4.84)

D = (1 − λ)λ′′
1 sinh2 ξ cosh2 φ (4.85)

E = (1 − λ)λ′′
1((cosh2 ξ cosh2 φ + sinh2 φ) sinh 2θ + cosh ξ cosh 2θ sinh 2φ) − ρ12 (4.86)

F = (1 − λ)λ′′
1(cosh θ cosh2 φ sinh 2ξ + sinh θ sinh ξ sinh 2φ) − ρ13 (4.87)

G = (1 − λ)λ′′
1(sinh θ cosh2 φ sinh 2ξ + cosh θ sinh ξ sinh 2φ) − ρ23. (4.88)

The parameters θ ′ and ξ ′ are obtained by solving equations (4.76) and (4.77); using the
remaining equations we can determine the parameters of ρs in terms of parameters of ρ
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and ρe. Note that the one-parameter density matrix which was considered in the previous
subsection can be obtained from the three-parameter density matrix by setting φ = φ′ =
φ′′ = ξ = ξ ′ = ξ ′′ = 0. One can see that the equations in the one-parameter case are
solvable and we can express the parameters of the separable and entangled parts in the LS
decomposition in terms of the parameters of the density matrix ρ which is the reason for its
separate consideration in the previous subsection.

4.6. 2 ⊗ 3 Bell decomposable state

In this subsection we obtain the optimal LS decomposition for the Bell decomposable states
of 2 ⊗ 3 quantum systems. A Bell decomposable density matrix acting on 2 ⊗ 3 Hilbert space
can be defined by

ρ =
6∑

i=1

pi |ψi〉〈ψi | 0 � pi � 1
6∑

i=1

pi = 1 (4.89)

where |ψi〉 are Bell states in H 6 ∼= H 2 ⊗ H 3 Hilbert space, defined by

|ψ1〉 = 1√
2
(|11〉 + |22〉) |ψ2〉 = 1√

2
(|11〉 − |22〉)

|ψ3〉 = 1√
2
(|12〉 + |23〉) |ψ4〉 = 1√

2
(|12〉 − |23〉)

|ψ5〉 = 1√
2
(|13〉 + |21〉) |ψ6〉 = 1√

2
(|13〉 − |21〉).

(4.90)

It is quite easy to see that the above states are orthogonal and hence they can span the Hilbert
space of 2 ⊗ 3 systems. From the Peres–Horodecki [4, 5] criterion for separability we deduce
that the state given in equation (4.89) is separable if and only if the following inequalities are
satisfied:

(p1 − p2)
2 � (p3 + p4)(p5 + p6) (4.91)

(p3 − p4)
2 � (p5 + p6)(p1 + p2) (4.92)

(p5 − p6)
2 � (p1 + p2)(p3 + p4). (4.93)

In what follows we always assume without loss of generality that p1 � p2, p3 � p4 and
p5 � p6. Recently in [14], an analytical lower bound of the concurrence of any 2 ⊗ K mixed
state is derived as

C(ρ) �
√∑

i>j

C2(ρ(ij)) (4.94)

where ρ(ij) are unnormalized states restricted to 2 ⊗ 2 subsystems under projection operators
P (ij) as

ρ(ij) = P (ij)ρP (ij) P (ij) = I2 ⊗ (|i〉〈i| + |j 〉〈j |) (4.95)

and C(ρ(ij)) are the Wootters concurrence of the corresponding restricted 2 ⊗ 2 density
matrices. For our 2 ⊗ 3 Bell decomposable state we get

C(ρ(12)) = max
{
0, p1 − p2 −

√
(p3 + p4)(p5 + p6)

}
(4.96)

C(ρ(23)) = max
{
0, p3 − p4 −

√
(p1 + p2)(p5 + p6)

}
(4.97)

C(ρ(13)) = max
{
0, p5 − p6 −

√
(p1 + p2)(p3 + p4)

}
. (4.98)



2978 S J Akhtarshenas and M A Jafarizadeh

It is interesting to note that each Wootters concurrence given in equations (4.96)–(4.98)
corresponds to the separability conditions given in equations (4.91)–(4.93), respectively. Now
in order to obtain the optimal LS decomposition for BD state given in equation (4.89) we
choose ρs = ∑

i p
′
i |ψi〉〈ψi | and ρe = ∑

i p
′′
i |ψi〉〈ψi |. We also assume without loss of

generality that ρs lies on the separable–entangled boundary defined by (all other cases where
ρs lies on the other surfaces can be treated similarly)

p′
1 − p′

2 =
√

(p′
3 + p′

4)(p
′
5 + p′

6). (4.99)

Moreover, ρs must satisfy the two other separability conditions (4.92) and (4.93). This means
that the entangled state ρ violates separability condition (4.91), i.e. we have

p1 � p2 +
√

(p3 + p4)(p5 + p6). (4.100)

However, two other inequalities (4.92) and (4.93) may be violated simultaneously. Taking into
account the above considerations and equation (3.9) we get after some elementary calculations
the following equation:

(1 − λ)2((p′′
1 − p′′

2)
2 − (p′′

3 + p′′
4)(p

′′
5 + p′′

6)) − (1 − λ)(2(p1 − p2)(p
′′
1 − p′′

2)

− (p3 + p4)(p
′′
5 + p′′

6) − (p5 + p6)(p
′′
3 + p′′

4))

+ ((p1 − p2)
2 − (p3 + p4)(p5 + p6)) = 0. (4.101)

In the rest of this subsection we will use equation (4.101) to calculate λ for some possible
values of p′′

i , i = 1, 2, . . . , 6, which are as follows:

(i) p′′ = 1. In this case equation (4.101) gives the following results:

λ = 1 − p1 − p2 +
√

(p3 + p4)(p5 + p6) ρe = |ψ1〉〈ψ1| (4.102)

p′
1 = p1 − (1 − λ)

λ
p′

j = pj

λ
for j = 2, . . . , 6. (4.103)

Furthermore, ρs must satisfy the separability conditions (4.92) and (4.93) which leads to
the following restrictions for ρ:

(p3 − p4)
2 � (p5 + p6)

(
2p2 +

√
(p3 + p4)(p5 + p6)

)
(p5 − p6)

2 � (p3 + p4)
(
2p2 +

√
(p3 + p4)(p5 + p6)

)
.

(4.104)

By using equation (4.100) one can see that conditions (4.104) are stronger than the
separability conditions (4.92) and (4.93), that is in this case only separability condition
(4.91) is violated by ρ. It is worth mentioning that for these states we are able to give an
exact expression for concurrence. As concurrence C(ρ) is defined as the infimum over
all possible pure state decompositions, no decomposition can have average concurrence
smaller than C(ρ). Since the decomposition given by equations (4.102) and (4.103)
constitutes a maximal entangled pure state |ψ1〉 and a separable state ρs , it follows that
its average concurrence is equal to the weight of the entangled part, namely (1 − λ). On
the other hand, for the entangled states restricted by equations (4.100) and (4.104) we get
C(ρ(12)) � 0 and C(ρ(13)) = C(ρ(13)) = 0. This means that the lower bound is equal to
(1 − λ), i.e.

C(ρ) = (1 − λ) = p1 − p2 −
√

(p3 + p4)(p5 + p6). (4.105)

(ii) p′′
1 + p′′

2 = 1. In this case by performing optimization procedure ∂λ
∂p′′

1
= ∂λ

∂p′′
2

= 0 in

equation (4.101) (under constraint p′′
1 + p′′

2 = 1), we can see that the equations obtained
from the optimization procedure restrict the density matrix ρ to rank 4, namely p3 = p4 =
0 or p5 = p6 = 0. Under these circumstances we get λ = C ′′−C

C ′′ and dλ
dC ′′ , where C and C ′′
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are the concurrence of ρ and ρe, respectively. This means that maximum λ happens when
p′′

2 = 0 which reduces to the results of the previous case.

(iii) p′′
1 + p′′

3 = 1. After the optimization procedure with the constraint p′′
1 + p′′

3 = 1 we get

λ = 1 − (p1 − p2) − (p3 + p4) − 1
4 (p5 + p6)

p′
1 = 2p2 − p5 − p6

2λ
p′

3 = p5 + p6 − 4p4

4λ
p′

j = pj

λ
for j = 2, 4, 5, 6

(4.106)

where the following inequalities should be imposed in order that ρs be a separable state:

2
(
p4 − 1

8 (p5 + p6)
)2 � (p5 + p6)

(
p2 − 1

4 (p5 + p6)
)

2(p5 − p6)
2 � (p5 + p6)

(
p2 − 1

4 (p5 + p6)
)

(4.107)

4p4 � p5 + p6 � 2p2.

(iv) p′′
1 + p′′

5 = 1. Analogous to the case p′′
1 + p′′

3 = 1 we get

λ = 1 − (p1 − p2) − 1
4 (p3 + p4) − (p5 + p6)

p′
1 = 2p2 − p3 − p4

2λ
p′

3 = p3 + p4 − 4p6

4λ
p′

j = pj

λ
for j = 2, 3, 4, 6

(4.108)

with restrictions

2(p3 − p4)
2 � (p3 + p4)

(
p2 − 1

4 (p3 + p4)
)

2
(
p6 − 1

8 (p3 + p4)
)2 � (p3 + p4)

(
p2 − 1

4 (p3 + p4)
)

4p6 � p3 + p4 � 2p2.

(4.109)

(v) p′′
1 + p′′

3 + P ′′
5 = 1. In this case it follows from optimization that rank ρ should be 4,

namely p4 = p6 = 0. Under this condition we get

λ = 2p2 p′
1 = p′

2 = 1
2 p′

3 = p′
4 = p′

5 = p′
6 = 0. (4.110)

4.7. Werner states

The Werner states are the only states that are invariant under U ⊗ U operations. For d ⊗ d

systems the Werner states are defined by [24]

ρf = 1

d3 − d
((d − f )I + (df − 1)F ) −1 � f � 1 (4.111)

where I stands for the identity operator and F = ∑
i,j |ij 〉〈ji|. It is shown that a Werner state

is separable iff 0 � f � 1. Now to obtain the optimal LS decomposition for Werner states we
choose ρf =0 as the separable part and ρf ′ as the entangled state, i.e. ρf = λρf =0 + (1 −λ)ρf ′ .
Then from equation (3.9) we get λ = f ′−f

f ′ and dλ
df ′ = f

f ′2 � 0, that is λ is maximum when

f ′ = −1. Using the above results we get

λ = f + 1 ρe = 1

d(d − 1)
(I − F). (4.112)
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4.8. Isotropic states

The isotropic states are the only ones that are invariant under U ⊗ U ∗ operations, where ∗

denotes complex conjugation. The isotropic states of d ⊗ d systems are defined by [25]

ρF = 1 − F

d2 − 1
(I − |ψ+〉〈ψ+|) + F |ψ+〉〈ψ+| 0 � F � 1 (4.113)

where |ψ+〉 = 1√
d

∑
i |ii〉 is the maximally entangled state. It is shown that an isotropic state

is separable when 0 � F � 1
d

[25]. Now in order to obtain the optimal LS decomposition
we choose a boundary isotropic separable state with F = 1/d as the separable part and ρF ′ as
the entangled state where we get λ = d(F ′−F)

dF ′−1 and dλ
dF ′ = d2(F−1/d)

(dF ′−1)2 � 0, that is, λ is maximum
when F ′ = 1. Using the above results we get

λ = d(1 − F)

d − 1
ρe = |ψ+〉〈ψ+|. (4.114)

It is interesting to stress that the average I-concurrence of the decomposition (4.114) is equal
to the I-concurrence of the state obtained in [26]. By using equation (2.8) one can easily see
that C(|ψ+〉) = √

2(1 − 1/d), which can be used to evaluate the average I-concurrence of the
decomposition

(1 − λ)C(|ψ+〉) =
√

2d

d − 1

(
F − 1

d

)
for

1

d
� F � 1 (4.115)

which is equal to the I-concurrence of isotropic states which has been obtained in [26].

4.9. One-parameter 3 ⊗ 3 state

Finally, let us consider a one-parameter state acting on H 9 ∼= H 3 ⊗ H 3 Hilbert space as [27]

ρα = 2

7
|ψ+〉〈ψ+| +

α

7
σ+ +

5 − α

7
σ− 2 � α � 5 (4.116)

where

|ψ+〉 = 1√
3
(|11〉 + |22〉 + |33〉)

σ+ = 1
3 (|12〉〈12| + |23〉〈23| + |31〉〈31|)

σ− = 1
3 (|21〉〈21| + |32〉〈32| + |13〉〈13|).

(4.117)

ρα is separable iff 2 � α � 3, it is bound entangled iff 3 � α � 4 and it is distillable
entangled state iff 4 � α � 5 [27]. To obtain LS decomposition for ρα we choose the
boundary separable state with α = 3 as ρs and ρe = ρα′ . After some calculations we get
λ = α−α′

3−α′ and dλ
dα′ = α−3

(3−α′)2 � 0. So the optimal LS decomposition is achieved by choosing
α′ = 5 and we get

λ = 5 − α

2
ρe = 2

7
|ψ+〉〈ψ+| +

5

7
σ+. (4.118)

4.10. Multi-partite isotropic states

In this subsection we obtain the optimal LS decomposition for a n-partite d-level system.
Let us consider the following mixture of the completely random state ρ0 = I/dn and the
maximally entangled state |ψ+〉:

ρ(s) = (1 − s)
I

dn
+ s|ψ+〉〈ψ+| 0 � s � 1 (4.119)
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where I denotes the identity operator in dn-dimensional Hilbert space and |ψ+〉 =
1√
d

∑d
i=1 |ii · · · i〉. The separability properties of the state (4.119) are considered in [28].

It is shown that the above state is separable iff s = s0 = (1 + dn−1)−1.
Now to obtain the optimal LS decomposition we choose ρ(s0) as the separable part

and ρ(s ′) as the entangled part. By using equation (3.9) we get λ = s ′−s
s ′−(1+dn−1)−1 and

dλ
ds ′ = s−(1+dn−1)−1

(s ′−(1+dn−1)−1)2 . This means that the maximum λ is achieved when s ′ = 1, so we get

λ = (1 − s)(1 + dn−1)

dn−1
ρe = |ψ+〉〈ψ+|. (4.120)

5. Conclusion

We have shown that for a given bipartite density matrix and by choosing a suitable separable
set on the separable–entangled boundary, the optimal Lewenstein–Sanpera decomposition
can be obtained via optimization over a generic entangled density matrix. Based on this,
the optimal LS decomposition is obtained for some bipartite systems. We have obtained
the optimal decomposition for some bipartite states such as 2⊗2 and 2⊗3 Bell decomposable
states, a generic two qubit state in Wootters basis, iso-concurrence decomposable states, the
states obtained from BD states via one-parameter and three-parameter LOCC operations,
d ⊗ d Werner and isotropic states, a one-parameter 3 ⊗ 3 state and the multi-partite isotropic
state. It is shown that in all 2 ⊗ 2 systems considered here the average concurrence of
the decomposition is equal to the concurrence. We also obtain an exact expression for the
concurrence of some 2 ⊗ 3 Bell decomposable states. In the case of d ⊗ d isotropic states it
is shown that the average I-concurrence of the decomposition is equal to the I-concurrence of
the states. We conjecture that for all optimal decompositions that the entangled part is only a
pure state, the average I-concurrence of the decomposition is equal to the I-concurrence of the
state.
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